Genetic and biochemical identification of the chorismate mutase from Corynebacterium glutamicum.

نویسندگان

  • Pan-Pan Li
  • Ya-Jun Liu
  • Shuang-Jiang Liu
چکیده

Chorismate mutase (CM) catalyses the rearrangement of chorismate to prephenate and is also the first and the key enzyme that diverges the shikimate pathway to either tryptophan (Trp) or phenylalanine (Phe) and tyrosine (Tyr). Corynebacterium glutamicum is one of the most important amino acid producers for the fermentation industry and has been widely investigated. However, the gene(s) encoding CM has not been experimentally identified in C. glutamicum. In this study, the ncgl0819 gene, which was annotated as 'conserved hypothetical protein' in the C. glutamicum genome, was genetically characterized to be essential for growth in minimal medium, and a mutant deleted of ncgl0819 was a Phe and Tyr auxotroph. Genetic cloning and expression of ncgl0819 in Escherichia coli resulted in the formation of a new protein (NCgl0819) having CM activity. It was concluded that ncgl0819 encoded the CM of C. glutamicum (CM0819). CM0819 was demonstrated to be a homodimer and is a new member of the monofunctional CMs of the AroQ structural class. The CM0819 activity was not affected by Phe, Tyr or Trp. Two 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthases (DS0950 and DS2098, formerly NCgl0950 and NCgl2098) had been previously identified from C. glutamicum. CM0819 significantly stimulated DAHP synthase (DS2098) activity. Physical interaction between CM0819 and DS2098 was observed. When CM0819 was present, DS2098 activity was subject to allosteric inhibition by chorismate and prephenate. Conserved hypothetical proteins homologous to CM0819 were identified in all known Corynebacterium genomes, suggesting a universal occurrence of CM0819-like CMs in the genus Corynebacterium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tryptophan-Producing Corynebacterium glutamicum Strain

The aromatic amino acids are synthesized via a common biosynthetic pathway. A tryptophan-producing mutant of Corynebacterium glutamicum was genetically engineered to produce tyrosine or phenylalanine in abundance. To achieve this, three biosynthetic genes encoding the first enzyme in the common pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DS), and the branch-point enzymes chor...

متن کامل

Formation and metabolism of methylmalonyl coenzyme A in Corynebacterium glutamicum.

Genome sequence information suggests that B(12)-dependent mutases are present in a number of bacteria, including members of the suborder Corynebacterineae like Mycobacterium tuberculosis and Corynebacterium glutamicum. We here functionally identify a methylmalonyl coenzyme A (CoA) mutase in C. glutamicum that is retained in all of the members of the suborder Corynebacterineae and is encoded by ...

متن کامل

Fermentative Production of Lysine by Corynebacterium glutamicum from Different Carbon Sources

Production of lysine by Corynebacterium glutamicum (PTCC 1532) from different agricultural by-products (molasses and pulpy waste date) was compared to glucose as raw materials. For this purpose, ammonium sulphate was selected as a constant nitrogen source. The effect of different nitrogen sources was also investigated with glucose as a constant carbon source. The production of L-lysine was exam...

متن کامل

In vivo catalysis of a metabolically essential reaction by an antibody.

We have established a growth selection requirement for a catalytic antibody with modest chorismate mutase activity. Conversion of (-)-chorismate into prephenate is the key step in the biosynthesis of the aromatic amino acids tyrosine and phenylalanine. Strains of the yeast Saccharomyces cerevisiae containing an insertion mutation in the structural gene for the enzyme chorismate mutase (EC 5.4.9...

متن کامل

Development of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum

Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 155 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2009